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Abstract. Based on the hypercontractivity of the free harmonic oscillator Hamiltonian and the
canonical commutation relation, we present a simple proof of Wehrl’s conjecture on the Shannon
entropy of phase space probability densities in the Fock—-Bargmann representation.

1. Introduction

Shannon entropy is a measure of the uncertainty inherent in a preassigned probability scheme.
For a probability density p () on some measure space (M, dm), its Shannon entropy is defined
as

S(p) = —/Mp(m)lnp(m)dm-

In the Schrodinger representation of a quantum harmonic oscillator with one degree of
freedom, the quantum state space is L?(R, dx). Any f € L*(R, dx) with unit norm is called
a wavefunction and | f (x)|? is interpreted as the probability density of the position observable
(or the momentum observable). Its Shannon entropy is

S(f) = —/R IO In | f (x)|* dx.

In particular, when f is a Gaussian wavepacket

1 2\
0= (7 orl-3)

its Shannon entropy is S(f) = % + ln(@a). Consequently, S(f) has a range (—o0, 00)
when f varies in L%(R, dx), and S( f) does not have a lower bound.

In the Fock—Bargmann representation (Bargmann 1961), the quantum harmonic oscillator
state space is

H*(C) = {f : C — C, holomorphic, (f, f) := / f@f)du(z) < oo}.
c
Here du(z) = m~'e~%% dz dZ is the standard Gaussian measure on C. The Bargmann transform

Bf(z) = / b(z, x) f(x)dx
R
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establishes an isometry from L2(R,dx) onto H?(C) and intertwines the Schrodinger
representation and the Fock—Bargmann representation. Here

b(z,x) = 2m) Y exp{—z2/2 + zx — x?/4).

Any f € H?(C) with unit norm is interpreted as a (Bargmann) wavefunction, and
pr@) = If (z)|%¢7 <" is interpreted as a phase space probability density on the phase space
(C,r~'dzdz). Wehrl (1979) proposed to use the Shannon entropy of this probability as a
classical entropy, and conjectured that

Sw(f) = —/ pr(@)Inps(z)r " dzdz > 1
C

for any f € H*(C), || f|l. = 1. The equality is achieved for normalized coherent states, that
is, when f is of the form f(z) = e I6P/2+82 for some & € C. The above inequality is in the
spirit of Heisenberg’s uncertainty principle.

Wehrl’s conjecture was first proved by Lieb (1978), who used two deep results in harmonic
analysis: the strengthened Hausdorff—Young inequality and the sharp Young inequality. In
view of the Heisenberg group lying behind the coherent states, Lieb (1994) invited a simpler
group-theoretic proof of Wehrl’s conjecture. In this paper, we present such a proof based
directly on hypercontractivity and the canonical commutation relation.

2. Hypercontractivity and Wehrl’s conjecture

First, we review some fundamental facts about the Bargmann space and operators on it. H*(C)
has a reproducing kernel es (z) := €%, that is, for any f € H*(C), it holds that

f) = /C e f@) duE)  foranyz e C.
The Schwarz inequality implies that

1F @I < 2 £
Thus if || £, = 1, then

pr(2) = If@Ie 2 <1

This is a kind of uncertainty relation, it manifests the limit of concentration of phase space
measurement. Wehrl’s conjecture on entropy sets a more synthesized uncertainty relation.
The creation operator ¢~ and annihilation operator a* are defined as

0
a f(z) = 3—Zf(z) a’ f(2) =zf(2)

respectively. They are adjoint to each other. Clearly, a~ e (2) = £ ez (z), and the (Heisenberg)
canonical commutation relation holds:

[a,a'l:=a at—a"a” =1
The free Hamiltonian after subtraction of the zero-point energy is

N =a%'a =z7—.
9z
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The L, norm is defined as

1/p
I £l = (/C If(z)l”dM(Z)) :

The following hypercontractivity property for a harmonic oscillator free Hamiltonian,
which is a strengthened version of Nelson’s famous hypercontractivity result, was proved by
Janson (1983) and Zhou (1991).

Lemma. Let T, = e~V t € [0, 00), be the dynamical semigroup generatedby N,2 < p < q,
then |T; fll; < I fll, if and only ife™> < p/q. The equality holds only when f = ae* for
some o, & € C.

Theorem (Wehrl, Lieb). For any f € H>(C), || fll» = 1, it holds that
Sw(f) =1

Moreover, the equality is achieved only for coherent states, that is, when f is of the form
e e
f(z) = e E1/2*¢2 for some £ € C.

Proof. The result follows directly from the hypercontractivity and the canonical commutation
relation. In fact, from the lemma, set p = 2,q = 2¢% and taking logarithms, we have

In||7; flloex —In || fll2 <O
Thus

d . In||T; fllaex —In |l fl2
- . = <
= ‘,zo N 17, fl2ex = lim t 0

However,

d d —t 2e2!
o mIT e = | (ez, 1nf|f<e 2 du(z))

2 1 2¢%
=—In|lflz+ 2fIR dr 70/|f( 2% du(z)

_L/E
T2 Cdlt:O

d E—
: /C f@P <2ln If @+ If(z)l‘za‘lzo(f(e‘”)f(e’z)) du(2)

eez’ In(f(e™"2) f(e™'2)) du(z)

fc @RI f QP du)

_%/C ((a*a_f)(z)f(z) + (a+a*f)(z)f(z)) du(z)

= /le(z)lzlnlf(z)lzdu(z)—(a+a_f,f>~

Consequently,

- /C ORI @R duE) > —(a*a f. f)
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and

Sw(f) = — / PP (1f @R ) 7 dzaz
C

—fc|f(z>|21n|f(z)|2du(z)+/c|z|2|f(z)|2du(z>

WV

/C 12?1 f @) du(z) — (a*a” f, f)

(@ fa* f)—(a*a” f. f)
=((aa*—a*a ) f, f)
=(f. f) =1

The equality holds when f is a coherent state, as implied by the case of hypercontractivity. [

3. Discussion

In the Schrodinger representation, a wavefunction only describes the probability of the position
observable or the momentum observable, but not both, and the corresponding Shannon entropy
does not have a lower bound. However, in the Fock—Bargmann representation, a wavefunction
describes the phase space probability, and thus in a certain sense is a ‘joint probability’ of the
position observable and the momentum observable. The Wehrl-Lieb theorem on the lower
bound of the Shannon entropy is physically in the spirit of Heisenberg’s uncertainty principle.
Actually, in the Schrodinger representation, there is also a result in this spirit:

S(FH)+S(F)>1+Inx

for any f € L*(R, dx) with a unit norm. Here

-~

f()= T F(x) dx

)
— [ e
21 JR
is the Fourier transform of f (see Ohya and Petz (1993) for a proof).

Finally, we mention that a similar statement, Lieb’s conjecture for the Wehrl entropy of
Bloch coherent states, is still open. See Lieb (1994) and Schupp (1999). The latter obtained a
partial result.
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