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Abstract. Based on the hypercontractivity of the free harmonic oscillator Hamiltonian and the
canonical commutation relation, we present a simple proof of Wehrl’s conjecture on the Shannon
entropy of phase space probability densities in the Fock–Bargmann representation.

1. Introduction

Shannon entropy is a measure of the uncertainty inherent in a preassigned probability scheme.
For a probability density ρ(m) on some measure space (M, dm), its Shannon entropy is defined
as

S(ρ) = −
∫

M

ρ(m) ln ρ(m) dm.

In the Schrödinger representation of a quantum harmonic oscillator with one degree of
freedom, the quantum state space is L2(R, dx). Any f ∈ L2(R, dx) with unit norm is called
a wavefunction and |f (x)|2 is interpreted as the probability density of the position observable
(or the momentum observable). Its Shannon entropy is

S(f ) = −
∫

R

|f (x)|2 ln |f (x)|2 dx.

In particular, when f is a Gaussian wavepacket

f (x) =
(

1√
2πσ

exp

[
− x2

2σ 2

])1/2

its Shannon entropy is S(f ) = 1
2 + ln(

√
2πσ). Consequently, S(f ) has a range (−∞, ∞)

when f varies in L2(R, dx), and S(f ) does not have a lower bound.
In the Fock–Bargmann representation (Bargmann 1961), the quantum harmonic oscillator

state space is

H 2(C) =
{

f : C → C, holomorphic, 〈f, f 〉 :=
∫

C

f (z)f (z) dµ(z) < ∞
}

.

Here dµ(z) = π−1e−zz̄ dz dz̄ is the standard Gaussian measure on C. The Bargmann transform

Bf (z) =
∫

R

b(z, x)f (x) dx
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establishes an isometry from L2(R, dx) onto H 2(C) and intertwines the Schrödinger
representation and the Fock–Bargmann representation. Here

b(z, x) = (2π)−1/4 exp{−z2/2 + zx − x2/4}.
Any f ∈ H 2(C) with unit norm is interpreted as a (Bargmann) wavefunction, and

ρf (z) = |f (z)|2e−|z|2 is interpreted as a phase space probability density on the phase space
(C, π−1 dz dz̄). Wehrl (1979) proposed to use the Shannon entropy of this probability as a
classical entropy, and conjectured that

SW (f ) := −
∫

C

ρf (z) ln ρf (z)π−1 dz dz̄ � 1

for any f ∈ H 2(C), ‖f ‖2 = 1. The equality is achieved for normalized coherent states, that
is, when f is of the form f (z) = e−|ξ |2/2+ξ̄ z for some ξ ∈ C. The above inequality is in the
spirit of Heisenberg’s uncertainty principle.

Wehrl’s conjecture was first proved by Lieb (1978), who used two deep results in harmonic
analysis: the strengthened Hausdorff–Young inequality and the sharp Young inequality. In
view of the Heisenberg group lying behind the coherent states, Lieb (1994) invited a simpler
group-theoretic proof of Wehrl’s conjecture. In this paper, we present such a proof based
directly on hypercontractivity and the canonical commutation relation.

2. Hypercontractivity and Wehrl’s conjecture

First, we review some fundamental facts about the Bargmann space and operators on it. H 2(C)

has a reproducing kernel eξ (z) := eξ̄ z, that is, for any f ∈ H 2(C), it holds that

f (z) =
∫

C

eξ̄ zf (ξ) dµ(ξ) for any z ∈ C.

The Schwarz inequality implies that

|f (z)| � e|z|2/2‖f ‖2.

Thus if ‖f ‖2 = 1, then

ρf (z) = |f (z)|e−|z|2/2 � 1.

This is a kind of uncertainty relation, it manifests the limit of concentration of phase space
measurement. Wehrl’s conjecture on entropy sets a more synthesized uncertainty relation.

The creation operator a− and annihilation operator a+ are defined as

a−f (z) = ∂

∂z
f (z) a+f (z) = zf (z)

respectively. They are adjoint to each other. Clearly, a−eξ (z) = ξ̄ eξ (z), and the (Heisenberg)
canonical commutation relation holds:

[a−, a+] := a−a+ − a+a− = I.

The free Hamiltonian after subtraction of the zero-point energy is

N = a+a− = z
∂

∂z
.
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The Lp norm is defined as

‖f ‖p =
(∫

C

|f (z)|p dµ(z)

)1/p

.

The following hypercontractivity property for a harmonic oscillator free Hamiltonian,
which is a strengthened version of Nelson’s famous hypercontractivity result, was proved by
Janson (1983) and Zhou (1991).

Lemma. Let Tt = e−tN , t ∈ [0, ∞), be the dynamical semigroup generated by N , 2 � p � q,
then ‖Ttf ‖q � ‖f ‖p if and only if e−2t � p/q. The equality holds only when f = αeξ̄ z for
some α, ξ ∈ C.

Theorem (Wehrl, Lieb). For any f ∈ H 2(C), ‖f ‖2 = 1, it holds that

SW (f ) � 1.

Moreover, the equality is achieved only for coherent states, that is, when f is of the form
f (z) = e−|ξ |2/2+ξ̄ z for some ξ ∈ C.

Proof. The result follows directly from the hypercontractivity and the canonical commutation
relation. In fact, from the lemma, set p = 2, q = 2e2t , and taking logarithms, we have

ln ‖Ttf ‖2e2t − ln ‖f ‖2 � 0.

Thus

d

dt

∣∣∣
t=0

ln ‖Ttf ‖2e2t = lim
t→0

ln ‖Ttf ‖2e2t − ln ‖f ‖2

t
� 0.

However,

d

dt

∣∣∣
t=0

ln ‖Ttf ‖2e2t = d

dt

∣∣∣
t=0

(
1

2e2t
ln

∫
C

|f (e−t z)|2e2t

dµ(z)

)

= − ln ‖f ‖2
2 +

1

2‖f ‖2
2

d

dt

∣∣∣
t=0

∫
C

|f (e−t z)|2e2t

dµ(z)

= 1
2

∫
C

d

dt

∣∣∣
t=0

ee2t ln(f (e−t z)f (e−t z)) dµ(z)

= 1
2

∫
C

|f (z)|2
(

2 ln |f (z)|2 + |f (z)|−2 d

dt

∣∣∣
t=0

(f (e−tz)f (e−t z)

)
dµ(z)

=
∫

C

|f (z)|2 ln |f (z)|2 dµ(z)

− 1
2

∫
C

(
(a+a−f )(z)f (z) + (a+a−f )(z)f (z)

)
dµ(z)

=
∫

C

|f (z)|2 ln |f (z)|2 dµ(z) − 〈a+a−f, f 〉.

Consequently,

−
∫

C

|f (z)|2 ln |f (z)|2 dµ(z) � −〈a+a−f, f 〉
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and

SW (f ) = −
∫

C

|f (z)|2e−|z|2 ln
(
|f (z)|2e−|z|2

)
π−1 dz dz̄

= −
∫

C

|f (z)|2 ln |f (z)|2 dµ(z) +
∫

C

|z|2|f (z)|2 dµ(z)

�
∫

C

|z|2|f (z)|2 dµ(z) − 〈a+a−f, f 〉

= 〈a+f, a+f 〉 − 〈a+a−f, f 〉
= 〈(a−a+ − a+a−)f, f 〉
= 〈f, f 〉 = 1.

The equality holds when f is a coherent state, as implied by the case of hypercontractivity. �

3. Discussion

In the Schrödinger representation, a wavefunction only describes the probability of the position
observable or the momentum observable, but not both, and the corresponding Shannon entropy
does not have a lower bound. However, in the Fock–Bargmann representation, a wavefunction
describes the phase space probability, and thus in a certain sense is a ‘joint probability’ of the
position observable and the momentum observable. The Wehrl–Lieb theorem on the lower
bound of the Shannon entropy is physically in the spirit of Heisenberg’s uncertainty principle.
Actually, in the Schrödinger representation, there is also a result in this spirit:

S(f ) + S(f̂ ) � 1 + ln π

for any f ∈ L2(R, dx) with a unit norm. Here

f̂ (t) = 1√
2π

∫
R

e−itxf (x) dx

is the Fourier transform of f (see Ohya and Petz (1993) for a proof).
Finally, we mention that a similar statement, Lieb’s conjecture for the Wehrl entropy of

Bloch coherent states, is still open. See Lieb (1994) and Schupp (1999). The latter obtained a
partial result.
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